Characterisation of a high pH cement backfill for the geological disposal of nuclear waste_ The Nirex Reference Vault Backfill
نویسندگان
چکیده
In a conceptual UK geological disposal facility for nuclear waste within a high-strength, crystalline geology, a cement-based backfill material, known as Nirex Reference Vault Backfill (NRVB), will be used to provide a chemical barrier to radionuclide release. The NRVB is required to have specific properties to fulfil the operational requirements of the geological disposal facility (GDF); these are dependent on the chemical and physical properties of the cement constituent materials and also on the water content. With the passage of time, the raw materials eventually used to synthesise the backfill may not be the same as those used to formulate it. As such, there is a requirement to understand how NRVB performance may be affected by a change in raw material supply. In this paper, we present a review of the current knowledge of NRVB and results from a detailed characterisation of this material, comparing the differences in performance of the final product when different raw materials are used. Results showed that minor differences in the particle size, surface area and chemical composition of the raw material had an effect on the workability, compressive strength, the rate of hydration and the porosity, which may influence some of the design functions of NRVB. This study outlines the requirement to fully characterise cement backfill raw materials prior to use in a geological disposal facility and supports ongoing assessment of long-term post-closure safety.
منابع مشابه
Real-Time Gamma Imaging of Technetium Transport through Natural and Engineered Porous Materials for Radioactive Waste Disposal
We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of (99)Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is ex...
متن کاملThe Impact of Biofilms upon Surfaces Relevant to an Intermediate Level Radioactive Waste Geological Disposal Facility under Simulated Near-Field Conditions
The ability of biofilms to form on a range of materials (cementious backfill (Nirex Reference Vault Backfill (NRVB)), graphite, and stainless steel) relevant to potential UK intermediate level radioactive waste (ILW) disposal concepts was investigated by exposing these surfaces to alkaliphilic flocs generated by mature biofilm communities. Flocs are aggregates of biofilm material that are able ...
متن کاملSorption of Tc(IV) to Cementitious Materials Associated with a Geological Disposal Facility for Radioactive Waste - 11129
Technetium-99 is one of the most important isotopes likely to be disposed of in the proposed UK Geological Disposal Facility (GDF) for higher-activity radioactive wastes. This is due to its long half-life, high fission yield, and its ability to migrate through the geosphere when in its oxidised, pertechnetate form. However, much of the technetium in the GDF is likely to be in the lower oxidatio...
متن کاملProperties of Low-ph Cement Grout as a Sealing Material for the Geological Disposal of Radioactive Waste
The OECD NEA (Nuclear Energy Agency) anticipates that by 2050 the amount of nuclear-generated electricity worldwide will increase by a minimum of 1.6 times and a maximum of 3.9 times its 2008 value of 372 GWe [1]. At the same time, the amount of radioactive waste that will be produced is expected to increase substantially. High-level radioactive waste is usually derived from the burning of uran...
متن کاملInverse Modeling of Gas, Water, and Heat Flow in Bentonite/crushed Rock Backfill
Swelling clays play a major role in current concepts for the underground disposal of high-level nuclear waste in deep geological formations. In one of the multi-barrier concepts for preventing the escape of radioactive substances from a high-level nuclear waste repository, the barrier consists of a copper container, compacted bentonite as buffer and backfill (the engineered barrier), and the re...
متن کامل